SHORT COMMUNICATION

The effect of high pressure on the crystal structure of LaOs₂ and CeOs₂

JOHN F. CANNON, DONALD L. ROBERTSON and H. TRACY HALL^{*} Department of Chemistry, Brigham Young University, Provo, Utah 84601 (U.S.A.)

A. C. LAWSON[†]
Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, Calif. 92037 (U.S.A.)
(Received October 17, 1972)

A short time ago the results of experiments on the effect of pressure on the formation of LRu₂ and LOs₂ compounds (L= Lanthanide) were reported¹. Compounds in the LOs₂ series did not readily form under high pressure and temperature conditions. Because of this difficulty no definite conclusion could be drawn concerning the shift of the LOs₂ PTP[‡] with the application of pressure.

TABLE I

Compound	Structure	Lattice Parameters (Å)			
		This work	This work Literature		
			2	7	8
LaOs ₂	Cubic	7.743(2)	7.737	7.736	
CeOs ₂	Cubic	7.593(1)	7.593		
PrOs ₂	Cubic	7.660(1)	7.663		
LaOs ₂	Hexagonal	5.419(1)			
		9.083(2)			
CeOs ₂	Hexagonal	5.355(1)			
		8.816(2)			
PrOs ₂	Hexagonal	5.370(1)	5.368		5.370
	-	8.978(1)	8.945		8.960

LATTICE PARAMETERS*

* The number in () refers to the standard deviation in the last significant figure. Copper radiation ($\lambda = 1.5418$ Å) used.

^{*} Research sponsored by the National Science Foundation.

[†] Research sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under AFOSR contract # AFOSR/F-44620-72-C-0017.

[‡] PTP= polymorphic transition point, the point in a lanthanide compound series where the crystal structure changes. At atmospheric pressure the LOs₂ PTP falls at PrOs₂, a compound which exists in both the cubic MgCu₂-type structure (characteristic of lighter LOs₂ compounds) and the hexagonal MgZn₂-type structure (characteristic of the heavier LOs₂ compounds)².

Further experiments utilizing the $MgCu_2$ -type LOs_2 compounds as starting material (rather than a 1: 2 mixture of the elements) have now been completed.

The MgCu₂-type compounds (for L= La, Ce, Pr) were prepared by arc-melting stoichiometric mixtures of the elements. X-ray powder patterns of the unannealed products revealed the MgCu₂-type structure in each case. The lattice parameters were determined and compared favorably with literature values (see Table 1).

TABLE II

X-RAY DATA FOR HEXAGONAL	LaOs ₂ AND	CeOs ₂
--------------------------	-----------------------	-------------------

h k l	LaOs ₂	LaOs ₂		CeOs ₂	
	d(obs.)	d(calc.)	d(obs.)	d(calc.)	
110	2 700	2 710	2 (79	2 (79	
110	2.709	2.710	2.078	2.678	
103	2.545	2.544	2.481	2.482	
200	n.o.		2.312	2.318	
112	2.327	2.327	2.289	2.288	
201	2.271	2.272	2.243	2.243	
004	2.271	2.271	2.203	2.204	
202	2.081	2.085	2.049	2.052	
104	2.047	2.044	1.990	1.991	
203	1.844*	1.855	1.819	1.820	
210	1.784*	1.774	1.751	1.753	
300	1.562	1.564	1.544	1.546	
213	1.528	1.530	1.505	1.505	
302	1.478	1.479	1.458	1.459	
205	1.437	1.436	1.403	1.404	
214	1.397	1.398	1.373	1.372	
220	Si		1.338	1.339	
116	1.322	1.322	n.o.		
222	1.299	1.298	n.o.		
206	1.272	1.272	Si		
313	1.194*	1.196	1.178	1.178	
224	1.163	1.163	1.146*	1.144	
207	1.135	1.136	Si		
323	1.012*	1 014	1 000	1 000	
226	n o		0.990	0.990	
412	0.998	0 999	0.986	0.986	
405	0.985	0.986	0.968	0.969	
324	0.903	0.900	Si		
218	Si	0.975	0.932	0.933	
406	0.927	0.927	0.909	0.935	
332	0.927	0.927	0.909	0.910	
121	0.000	0.883	0.873	0.873	
+ 2 1	0.005	0.005	0.072 Si	0.072	
422	0.0/1	0.8/1	SI 0.852		
4U/ 210	11.U. C:		0.033	0.033	
3 I ð 2 0 10	51		0.837	0.837	
2010	n.o.		0.824	0.824	
513	n.o.		0.801	0.801	
425	0.797	0.797	Si		

* Not used in lattice constant determination.

n.o.= not observed, Si= interference from silicon internal standard.

The high pressure experiments were carried out in a tetrahedral press with anvil guides as designed by Hall^{3,4}. Experimental details have been given in previous papers^{1, 5}.

X-ray work was done on a G.E. XRD-5 powder diffraction unit. Immediately following each high pressure run the sample was crushed and X-rayed without further preparation. The Nelson-Riley extrapolation⁶ was used to correct for absorption. A silicon internal standard was used with the non-cubic structures.

Experiments conducted at 70 kbar and 1000°C resulted in the conversion of the cubic starting materials (LaOs₂, CeOs₂ and PrOs₂) to the hexagonal form. Further experiments revealed that hexagonal CeOs₂ could be prepared at pressures as low as 6 kbar (the lowest pressure used in this work) and that the lowest synthesis pressure for hexagonal LaOs₂ is between 6 and 14 kbar. It was also noted that at temperatures above 1050-1100°C the cubic structure was retained regardless of the pressure. X-ray data are given in Table I (lattice parameters) and Table II (observed and calculated *d*-values for hexagonal LaOs₂)

It is clear that the LOs_2 PTP shifts toward the lighter lanthanides with the application of high pressures at temperatures less than 1050-1100°C. This further supports the tentative conclusion of the previous paper¹ that changes in the amount of 4*f* bonding are not responsible for the polymorphic changes in lanthanide compound series.

REFERENCES

² V. B. Compton and B. T. Matthias, Acta Crystallogr., 12 (1959) 651-654.

- ⁴ H. T. Hall, *Rev. Sci. Instrum.*, 33 (1962) 1278-1280.
- ⁵ J. F. Cannon and H. T. Hall, *Inorg. Chem.*, 9 (1970) 1639-1643.
- ⁶ J. B. Nelson and D. P. Riley, Proc. Phys. Soc. (London), 57 (1945) 160-177.
- ⁷ A. E. Dwight, Trans. Amer. Soc. Metals, 53 (1961) 479-500.
- ⁸ R. P. Elliott, Proc. Conf. Rare Earth Res., 4th, 1964 (1965) 215-245.

¹ J. F. Cannon, D. L. Robertson and H.T. Hall, J. Less-Common Metals, 29 (1972) 141-146.

³ H. T. Hall, Rev. Sci. Instrum., 29 (1958) 267 275.